face01lib.damo_yolo.damo_internal.utils.boxes のソースコード

#!/usr/bin/env python3
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Megvii Inc. All rights reserved.
# Copyright (C) Alibaba Group Holding Limited. All rights reserved.

import numpy as np
import torch
import torchvision

from ..structures.bounding_box import BoxList

__all__ = [
    'filter_box',
    'postprocess',
    'bboxes_iou',
    'matrix_iou',
    'adjust_box_anns',
    'xyxy2xywh',
    'xyxy2cxcywh',
]


def multiclass_nms(multi_bboxes,
                   multi_scores,
                   score_thr,
                   iou_thr,
                   max_num=100,
                   score_factors=None):
    """NMS for multi-class bboxes.

    Args:
        multi_bboxes (Tensor): shape (n, #class*4) or (n, 4)
        multi_scores (Tensor): shape (n, #class), where the last column
            contains scores of the background class, but this will be ignored.
        score_thr (float): bbox threshold, bboxes with scores lower than it
            will not be considered.
        nms_thr (float): NMS IoU threshold
        max_num (int): if there are more than max_num bboxes after NMS,
            only top max_num will be kept.
        score_factors (Tensor): The factors multiplied to scores before
            applying NMS

    Returns:
        tuple: (bboxes, labels), tensors of shape (k, 5) and (k, 1). Labels \
            are 0-based.
    """
    num_classes = multi_scores.size(1)
    # exclude background category
    if multi_bboxes.shape[1] > 4:
        bboxes = multi_bboxes.view(multi_scores.size(0), -1, 4)
    else:
        bboxes = multi_bboxes[:, None].expand(multi_scores.size(0),
                                              num_classes, 4)
    scores = multi_scores
    # filter out boxes with low scores
    valid_mask = scores > score_thr  # 1000 * 80 bool

    # We use masked_select for ONNX exporting purpose,
    # which is equivalent to bboxes = bboxes[valid_mask]
    # (TODO): as ONNX does not support repeat now,
    # we have to use this ugly code
    # bboxes -> 1000, 4
    bboxes = torch.masked_select(
        bboxes,
        torch.stack((valid_mask, valid_mask, valid_mask, valid_mask),
                    -1)).view(-1, 4)  # mask->  1000*80*4, 80000*4
    if score_factors is not None:
        scores = scores * score_factors[:, None]
    scores = torch.masked_select(scores, valid_mask)
    labels = valid_mask.nonzero(as_tuple=False)[:, 1]

    if bboxes.numel() == 0:
        bboxes = multi_bboxes.new_zeros((0, 5))
        labels = multi_bboxes.new_zeros((0, ), dtype=torch.long)
        scores = multi_bboxes.new_zeros((0, ))

        return bboxes, scores, labels

    keep = torchvision.ops.batched_nms(bboxes, scores, labels, iou_thr)

    if max_num > 0:
        keep = keep[:max_num]

    return bboxes[keep], scores[keep], labels[keep]


[ドキュメント] def filter_box(output, scale_range): """ output: (N, 5+class) shape """ min_scale, max_scale = scale_range w = output[:, 2] - output[:, 0] h = output[:, 3] - output[:, 1] keep = (w * h > min_scale * min_scale) & (w * h < max_scale * max_scale) return output[keep]
def filter_results(boxlist, num_classes, nms_thre): boxes = boxlist.bbox scores = boxlist.get_field('scores') cls = boxlist.get_field('labels') nms_out_index = torchvision.ops.batched_nms( boxes, scores, cls, nms_thre, ) boxlist = boxlist[nms_out_index] return boxlist
[ドキュメント] def postprocess(cls_scores, bbox_preds, num_classes, conf_thre=0.7, nms_thre=0.45, imgs=None): batch_size = bbox_preds.size(0) output = [None for _ in range(batch_size)] for i in range(batch_size): # If none are remaining => process next image if not bbox_preds[i].size(0): continue detections, scores, labels = multiclass_nms(bbox_preds[i], cls_scores[i], conf_thre, nms_thre, 500) detections = torch.cat((detections, torch.ones_like( scores[:, None]), scores[:, None], labels[:, None]), dim=1) if output[i] is None: output[i] = detections else: output[i] = torch.cat((output[i], detections)) # transfer to BoxList for i in range(len(output)): res = output[i] if res is None or imgs is None: boxlist = BoxList(torch.zeros(0, 4), (0, 0), mode='xyxy') boxlist.add_field('objectness', 0) boxlist.add_field('scores', 0) boxlist.add_field('labels', -1) else: img_h, img_w = imgs.image_sizes[i] boxlist = BoxList(res[:, :4], (img_w, img_h), mode='xyxy') boxlist.add_field('objectness', res[:, 4]) boxlist.add_field('scores', res[:, 5]) boxlist.add_field('labels', res[:, 6]) output[i] = boxlist return output
[ドキュメント] def bboxes_iou(bboxes_a, bboxes_b, xyxy=True): if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4: raise IndexError if xyxy: tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2]) br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:]) area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1) area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1) else: tl = torch.max( (bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2), (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2), ) br = torch.min( (bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2), (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2), ) area_a = torch.prod(bboxes_a[:, 2:], 1) area_b = torch.prod(bboxes_b[:, 2:], 1) en = (tl < br).type(tl.type()).prod(dim=2) area_i = torch.prod(br - tl, 2) * en # * ((tl < br).all()) return area_i / (area_a[:, None] + area_b - area_i)
[ドキュメント] def matrix_iou(a, b): """ return iou of a and b, numpy version for data augenmentation """ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) return area_i / (area_a[:, np.newaxis] + area_b - area_i + 1e-12)
[ドキュメント] def adjust_box_anns(bbox, scale_ratio, padw, padh, w_max, h_max): bbox[:, 0::2] = np.clip(bbox[:, 0::2] * scale_ratio + padw, 0, w_max) bbox[:, 1::2] = np.clip(bbox[:, 1::2] * scale_ratio + padh, 0, h_max) return bbox
[ドキュメント] def xyxy2xywh(bboxes): bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] return bboxes
[ドキュメント] def xyxy2cxcywh(bboxes): bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] bboxes[:, 0] = bboxes[:, 0] + bboxes[:, 2] * 0.5 bboxes[:, 1] = bboxes[:, 1] + bboxes[:, 3] * 0.5 return bboxes