face01lib.damo_yolo.damo_internal.structures.image_list のソースコード

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from __future__ import division

import torch


[ドキュメント] class ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image """ def __init__(self, tensors, image_sizes, pad_sizes): """ Arguments: tensors (tensor) image_sizes (list[tuple[int, int]]) """ self.tensors = tensors self.image_sizes = image_sizes self.pad_sizes = pad_sizes
[ドキュメント] def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) return ImageList(cast_tensor, self.image_sizes, self.pad_sizes)
[ドキュメント] def to_image_list(tensors, size_divisible=0, max_size=None): """ tensors can be an ImageList, a torch.Tensor or an iterable of Tensors. It can't be a numpy array. When tensors is an iterable of Tensors, it pads the Tensors with zeros so that they have the same shape """ if isinstance(tensors, torch.Tensor) and size_divisible > 0: tensors = [tensors] if isinstance(tensors, ImageList): return tensors elif isinstance(tensors, torch.Tensor): # single tensor shape can be inferred if tensors.dim() == 3: tensors = tensors[None] assert tensors.dim() == 4 image_sizes = [tensor.shape[-2:] for tensor in tensors] return ImageList(tensors, image_sizes, image_sizes) elif isinstance(tensors, (tuple, list)): if max_size is None: max_size = tuple( max(s) for s in zip(*[img.shape for img in tensors])) # TODO Ideally, just remove this and let me model handle arbitrary # input sizs if size_divisible > 0: import math stride = size_divisible max_size = list(max_size) max_size[1] = int(math.ceil(max_size[1] / stride) * stride) max_size[2] = int(math.ceil(max_size[2] / stride) * stride) max_size = tuple(max_size) batch_shape = (len(tensors), ) + max_size batched_imgs = tensors[0].new(*batch_shape).zero_() # + 114 for img, pad_img in zip(tensors, batched_imgs): pad_img[:img.shape[0], :img.shape[1], :img.shape[2]].copy_(img) image_sizes = [im.shape[-2:] for im in tensors] pad_sizes = [batched_imgs.shape[-2:] for im in batched_imgs] return ImageList(batched_imgs, image_sizes, pad_sizes) else: raise TypeError('Unsupported type for to_image_list: {}'.format( type(tensors)))