"""Reference.
- Data structure:
- Definition of person_data_list and frame_datas_array:
- overlay (npt.NDArray[np.uint8]): Copy of frame
- face_location_list (List[Tuple[int,int,int,int]]): List of face_location
- name (str): Each of person's name
- filename (str): File name
- percentage_and_symbol (str): Concatenate of digit of percentage and '%' symbol
- person_data_list (List): List of person_data
- frame_datas_array (List[Dict]): Array of frame_datas
- resized_frame (npt.NDArray[np.uint8]): Numpy array of frame
>>> person_data = {
'name': name,
'pict':filename,
'date': date,
'location': (top,right,bottom,left),
'percentage_and_symbol': percentage_and_symbol
}
>>> person_data_list.append(person_data)
>>> frame_datas = {
'img': resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
>>> frame_datas_array.append(frame_datas)
- About coordinate order:
- dlib: (Left, Top, Right, Bottom,)
- Dlib_api(): (top, right, bottom, left)
- see bellow
- https://github.com/davisking/dlib/blob/master/python_examples/faceapi.py
- References:
- About usage of 'cython':
- see bellow
- https://www.youtube.com/watch?app=desktop&v=sGggkVaRMzY
- About mediapipe for python:
- see bellow
- https://github.com/google/mediapipe/tree/master/mediapipe/python
- https://solutions.mediapipe.dev/face_detection#python-solution-api
- About anti spoof function:
- model
- Original model create by Prokofev Kirill, modified by PINT
- URL
- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/191_anti-spoof-mn3
"""
# from __future__ import annotations
import os
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from os.path import exists
from platform import system
from shutil import move
from traceback import format_exc
from typing import Dict, Generator, List, Tuple, Union
import cv2
import mediapipe as mp
import mojimoji
import numpy as np
import numpy.typing as npt # See [](https://discuss.python.org/t/how-to-type-annotate-mathematical-operations-that-supports-built-in-numerics-collections-and-numpy-arrays/13509)
import onnxruntime as ort
# from memory_profiler import profile # @profile()
from PIL import Image, ImageDraw, ImageFile, ImageFont
from face01lib.api import Dlib_api
from face01lib.Calc import Cal
from face01lib.logger import Logger
from face01lib.models import Models
from face01lib.return_face_image import Return_face_image
from face01lib.video_capture import VidCap
Cal_obj = Cal()
VidCap_obj = VidCap()
Dlib_api_obj = Dlib_api()
Return_face_image_obj = Return_face_image()
ImageFile.LOAD_TRUNCATED_IMAGES = True
anti_spoof_model: str = Models().anti_spoof_model_location()
# mediapipeのスパムログ出力を抑制 ####################
os.environ['GLOG_minloglevel'] = '3' # 3: FATAL (致命的なエラー)
# ログレベルをERRORに設定 (INFOやDEBUGより低いレベルのログが出力されなくなる)
# mp.logging_util.set_verbosity(mp.logging_util.ERROR) # mediapipe v0.10.14では未対応
# ####################################################
[ドキュメント]
class Core:
"""Coreクラス.
このクラスは多くの有用なメソッドを含みます。
"""
def __init__(self, log_level: str = 'info') -> None:
"""init.
Args:
log_level (str, optional): ログレベルを受け取ります。デフォルトは`info`です。
"""
# Setup logger: common way
self.log_level: str = log_level
import os.path
name: str = __name__
dir: str = os.path.dirname(__file__)
parent_dir, _ = os.path.split(dir)
self.logger = Logger(self.log_level).logger(name, parent_dir)
# Cal_obj.cal_specify_date(self.logger) # 日付による動作停止処理は廃止
# @profile()
[ドキュメント]
def mp_face_detection_func(
self,
resized_frame: npt.NDArray[np.uint8],
model_selection: int = 0,
min_detection_confidence: float = 0.4
):
"""RGBイメージを処理し、mediapipeを使って算出したface locationデータを返します.
Args:
resized_frame (npt.NDArray[np.uint8]): Resized image frame
model_selection (int, optional): Value set in config.ini. Defaults to 0.
min_detection_confidence (float, optional): Value set in config.ini. Defaults to 0.4.
Returns:
A NamedTuple object with a "detections" field that contains a list of the
detected face location data.
Refer:
https://solutions.mediapipe.dev/face_detection#python-solution-api
Note:
number_of_people and same_time_recognize in config.ini are disabled when using mp_face_detection_func.
"""
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.model_selection: Tuple[int] = model_selection,
self.min_detection_confidence: float = min_detection_confidence
"""DEBUG
VidCap().frame_imshow_for_debug(self.resized_frame)
print(type(self.resized_frame))
"""
# method 1
# mp_face_detection = mp.solutions.face_detection
# with mp_face_detection.FaceDetection(
# self.model_selection[0],
# self.min_detection_confidence
# ) as face_detection:
# results = face_detection.process(self.resized_frame)
# method 2
f = mp.solutions.face_detection.FaceDetection(
self.model_selection[0],
self.min_detection_confidence
)
results = f.process(self.resized_frame)
f.close()
"""DEBUG
if not results.detections:
exit(0)
"""
"""リファレンス
https://solutions.mediapipe.dev/face_detection#python-solution-api
Processes an RGB image and returns a list of the detected face location data.
Args:
image: An RGB image represented as a numpy ndarray.
Raises:
RuntimeError: If the underlying graph throws any error.
ValueError:
If the input image is not three channel RGB.
Returns:
A NamedTuple object with a "detections" field that contains a list of the
detected face location data.'
"""
return results
# @profile()
def _return_face_location_list(
self,
resized_frame: npt.NDArray[np.uint8],
set_width: int,
set_height: int,
model_selection: int,
min_detection_confidence: float,
same_time_recognize: int = 2
) -> List[Tuple[int, int, int, int]]:
self.face_location_list_resized_frame: npt.NDArray[np.uint8] = resized_frame
self.set_width: int = set_width
self.set_height: int = set_height
self.face_location_list_model_selection: int = model_selection
self.min_detection_confidence = min_detection_confidence
self.same_time_recognize: int = same_time_recognize
self.face_location_list_resized_frame.flags.writeable = False
face_location_list: List = []
# person_frame = np.empty((2,0), dtype = np.float64)
# date = datetime.now().strftime("%Y,%m,%d,%H,%M,%S,%f")
# VidCap().frame_imshow_for_debug(self.face_location_list_resized_frame)
results = \
self.mp_face_detection_func(
self.face_location_list_resized_frame,
self.face_location_list_model_selection,
self.min_detection_confidence
)
if not results.detections:
return [] # face_location_list
else:
# n: int = 0
"""TODO:
なぜresults.detectionsは大きな数なのか?
results.detectionは顔パーツそれぞれのデータを持つ可能性
→use_pipe = Trueの時はperson_frame_face_encodingとnumber_of_peopleは無効になる旨、ドキュメントに書いておきます。
"""
for detection in results.detections:
# if n >= 1:
# # if n >= self.same_time_recognize:
# break
xleft: int = int(
detection.location_data.relative_bounding_box.xmin * self.set_width)
xtop: int = int(
detection.location_data.relative_bounding_box.ymin * self.set_height)
xright: int = int(
detection.location_data.relative_bounding_box.width * self.set_width + xleft)
xbottom: int = int(
detection.location_data.relative_bounding_box.height * self.set_height + xtop)
# see bellow
# https://stackoverflow.com/questions/71094744/how-to-crop-face-detected-via-mediapipe-in-python
if xleft <= 0 or xtop <= 0: # xleft or xtop がマイナスになる場合があるとバグる
continue
face_location_list.append(
(xtop, xright, xbottom, xleft)) # Dlib_api() order
# n += 1
self.resized_frame.flags.writeable = True
return face_location_list
# @profile()
def _draw_telop(
self,
logger,
cal_resized_telop_nums: Tuple[int, int, int, int, npt.NDArray[np.float64], npt.NDArray[np.float64]],
frame: npt.NDArray[np.uint8]
) -> npt.NDArray[np.uint8]:
self.logger = logger
self.cal_resized_telop_nums: Tuple[int, int, int, int,
npt.NDArray[np.float64], npt.NDArray[np.float64]] = cal_resized_telop_nums
self.frame: npt.NDArray[np.uint8] = frame
x1: int
y1: int
x2: int
y2: int
a: npt.NDArray[np.float64]
b: npt.NDArray[np.float64]
x1, y1, x2, y2, a, b = self.cal_resized_telop_nums
frame_view: npt.NDArray[np.uint8] = self.frame.view(
dtype=np.uint8, type=np.ndarray)
try:
# TODO: #21 numpyのfunctionを探す
# https://numpy.org/devdocs/reference/arrays.indexing.html
frame[y1:y2, x1:x2] = self.frame[y1:y2, x1:x2] * a + b
# frame[:,y1:y2, x1:x2] = frame_view[:,y1:y2, x1:x2] * a + b
except:
self.logger.debug("cannot draw telop image")
# TODO np.clip
return frame
# @profile()
def _draw_logo(
self,
logger,
cal_resized_logo_nums: Tuple[int, int, int, int, npt.NDArray[np.float64], npt.NDArray[np.float64]],
frame: npt.NDArray[np.uint8]
) -> npt.NDArray[np.uint8]:
self.logger = logger
self.cal_resized_logo_nums: Tuple[int, int, int, int,
npt.NDArray[np.float64], npt.NDArray[np.float64]] = cal_resized_logo_nums
self.frame: npt.NDArray[np.uint8] = frame
x1: int
y1: int
x2: int
y2: int
a: npt.NDArray[np.float64]
b: npt.NDArray[np.float64]
x1, y1, x2, y2, a, b = self.cal_resized_logo_nums
try:
frame[y1:y2, x1:x2] = self.frame[y1:y2, x1:x2] * a + b
except:
self.logger.debug("logoが描画できません")
# TODO np.clip
return frame
# @profile()
def _check_compare_faces(
self,
logger,
deep_learning_model: int,
known_face_encodings: List[npt.NDArray[np.float64]],
face_encoding: npt.NDArray[np.float64],
tolerance: float
) -> Tuple[npt.NDArray[np.bool8], float]:
"""dlib_apiを用いてmatchリストとmin valueを返します.
Args:
logger (_type_): logger
known_face_encodings (List[npt.NDArray[np.float64]]): known face encodesリスト
face_encoding (npt.NDArray[np.float64]): 比較されるFace encoding data
tolerance (float): tolerance値
Returns:
Tuple[npt.NDArray[np.bool8], float]: match list, min value
"""
self.logger = logger
self.deep_learning_model: int = deep_learning_model
self.known_face_encodings: List[npt.NDArray[np.float64]
] = known_face_encodings
self.face_encoding: npt.NDArray[np.float64] = face_encoding
self.tolerance: float = tolerance
self.threshold: float = Cal_obj.to_tolerance(
self.CONFIG["similar_percentage"], self.CONFIG["deep_learning_model"])
try:
matches: npt.NDArray[np.bool8]
min_distance: float
matches, min_distance =\
Dlib_api_obj.compare_faces(
self.deep_learning_model,
self.known_face_encodings,
self.face_encoding,
self.tolerance,
self.threshold
)
return matches, min_distance
except:
self.logger.error("DEBUG: npKnown.npzが壊れているか予期しないエラーが発生しました。")
self.logger.error(
"npKnown.npzの自動削除は行われません。原因を特定の上、必要な場合npKnown.npzを削除して下さい。")
self.logger.error("処理を終了します。FACE01を再起動して下さい。")
self.logger.error("以下のエラーをシステム管理者様へお伝えください")
self.logger.error("-" * 20)
self.logger.error(format_exc(limit=None, chain=True))
self.logger.error("-" * 20)
exit(0)
# @profile()
[ドキュメント]
def make_frame_datas_array(
self,
overlay: npt.NDArray[np.uint8],
face_location_list: List[Tuple[int, int, int, int]],
name: str,
filename: str,
percentage_and_symbol: str,
person_data_list: List,
frame_datas_array: List[Dict],
resized_frame: npt.NDArray[np.uint8]
) -> List[Dict]:
"""Method to make frame_datas_array.
Return the data structure of frame_datas_list.
Args:
overlay (npt.NDArray[np.uint8]): Copy of frame
face_location_list (List[Tuple[int,int,int,int]]): List of face_location
name (str): Each of person's name
filename (str): File name
percentage_and_symbol (str): Concatenate of digit of percentage and '%' symbol
person_data_list (List): List of person_data
frame_datas_array (List[Dict]): Array of frame_datas
resized_frame (npt.NDArray[np.uint8]): Numpy array of frame
Returns:
List[Dict]: List of frame_datas_array
Example:
person_data
>>> {
'name': name,
'pict': filename,
'date': date,
'location': (top,right,bottom,left),
'percentage_and_symbol': percentage_and_symbol
}
person_data_list
>>> person_data_list.append(person_data)
frame_datas
>>> {
'img': resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
frame_datas_list
>>> frame_datas_array.append(frame_datas)
"""
self.overlay: npt.NDArray[np.uint8] = overlay
self.face_location_list: List[Tuple[int,
int, int, int]] = face_location_list
self.name: str = name
self.filename: str = filename
self.percentage_and_symbol: str = percentage_and_symbol
self.person_data_list: List = person_data_list
self.frame_datas_array: List[Dict] = frame_datas_array
self.make_frame_datas_array_resized_frame: npt.NDArray[np.uint8] = resized_frame
if len(face_location_list) > 0:
for face_location in face_location_list:
# person_data = {'spoof_dict':{}, 'name': self.name, 'pict':self.filename, 'date':date, 'location':face_location, 'percentage_and_symbol': self.percentage_and_symbol}
# self.person_data_list.append(person_data)
frame_datas = {
'img': self.make_frame_datas_array_resized_frame,
'face_location_list': self.face_location_list,
'overlay': self.overlay,
'person_data_list': self.person_data_list
}
self.frame_datas_array.append(frame_datas)
else:
frame_datas = {
'img': self.make_frame_datas_array_resized_frame,
'face_location_list': self.face_location_list,
'overlay': self.overlay,
'person_data_list': self.person_data_list
}
self.frame_datas_array.append(frame_datas)
"""DEBUG
logger.debug(f'frame_datas_array size: {len(self.frame_datas_array)}')
logger.debug(inspect.currentframe().f_back.f_code.co_filename)
logger.debug(inspect.currentframe().f_back.f_lineno)
"""
return self.frame_datas_array
# pil_img_rgbオブジェクトを生成
# @profile()
def _pil_img_rgb_instance(self, frame):
self.frame = frame
pil_img_obj_rgb = Image.fromarray(
cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGBA))
return pil_img_obj_rgb
# 顔部分の領域をクロップ画像ファイルとして出力
# @profile()
def _make_crop_face_image(
self,
anti_spoof,
name,
dis,
pil_img_obj_rgb,
top,
left,
right,
bottom,
number_of_crops,
frequency_crop_image
):
self.anti_spoof = anti_spoof
self.name = name
self.dis = dis
self.pil_img_obj_rgb = pil_img_obj_rgb
self.top = top
self.left = left
self.right = right
self.bottom = bottom
self.number_of_crops = number_of_crops
self.frequency_crop_image = frequency_crop_image
date = datetime.now().strftime("%Y,%m,%d,%H,%M,%S,%f")
# TODO: CROPする時の余白を設定可能にする
margin = 50
imgCroped = \
self.pil_img_obj_rgb.crop(
(self.left - margin, self.top - margin, self.right + margin, self.bottom + margin)).resize((400, 400)
)
# TODO: outputのファイル名にanti_spoof結果を入れる
if self.anti_spoof is True:
filename = "output/%s_%s_%s.png" % (self.name, date, self.dis)
else:
filename = "output/%s_%s_%s.png" % (self.name, date, self.dis)
imgCroped.save(filename)
return filename, self.number_of_crops, self.frequency_crop_image
# @profile()
def _return_face_name(
self,
CONFIG: Dict,
matches: npt.NDArray[np.bool8],
min_distance: float
) -> str:
"""Get face_name.
Args:
CONFIG (Dict): CONFIG
matches (npt.NDArray[np.bool8]): List of bool value
min_distance (float): min value
Returns:
str: Name who is.
"""
self.CONFIG = CONFIG
self.matches = matches
self.min_distance = min_distance
if self.CONFIG["deep_learning_model"] == 0:
# アレイ中のインデックスからknown_face_names中の同インデックスの要素を算出
# index: int = np.where(matches is True)[0][0] # bug: Trueが複数ある場合、最初の要素が取得されてしまう。
#
# matches配列において、最初の列が1である行の中から、2番目の列の値が最も小さい行を見つける
# 最小値のインデックスを取得
min_index = np.argmin(matches[matches[:, 0] == 1, 1])
# 最小値を持つ行のインデックスを求める
rows_with_1 = np.where(matches[:, 0] == 1)[0]
index = rows_with_1[min_index]
file_name: str = str(
CONFIG["known_face_names"][index]) + ':' + str(min_distance)
return file_name
elif self.CONFIG["deep_learning_model"] == 1:
# matches配列において、最初の列が1である行の中から、2番目の列の値が最も大きい行を見つける
# 最大値のインデックスを取得
max_index = np.argmax(matches[matches[:, 0] == 1, 1])
# 最大値を持つ行のインデックスを求める
rows_with_1 = np.where(matches[:, 0] == 1)[0]
index = rows_with_1[max_index]
file_name: str = str(
CONFIG["known_face_names"][index]) + ':' + str(min_distance)
return file_name
# @profile()
[ドキュメント]
def return_concatenate_location_and_frame(
self,
resized_frame: npt.NDArray[np.uint8],
face_location_list: List[Tuple[int, int, int, int]]
) -> Tuple[List[Tuple[int, int, int, int]], npt.NDArray[np.uint8]]:
"""Return tuple.
- concatenate_face_location_list
- concatenate_person_frame
Args:
resized_frame (npt.NDArray[np.uint8]): Resized frame
face_location_list (List[Tuple[int,int,int,int]]): Face location list
Returns:
concatenate_face_location_list (Tuple[List[Tuple[int,int,int,int]])
List of concatenated coordinates
concatenate_person_frame (npt.NDArray[np.uint8]])
Image data of concatenated person image data
"""
self.return_concatenate_location_and_frame_resized_frame: npt.NDArray[
np.uint8] = resized_frame
self.face_location_list = face_location_list
"""face_location_listはresized_frame上の顔座標"""
finally_height_size: int = 150
concatenate_face_location_list: List[Tuple[int, int, int, int]] = []
detection_counter: int = 0
person_frame_list: List[npt.NDArray[np.uint8]] = []
concatenate_person_frame: npt.NDArray[np.uint8] = np.empty(
(2, 2, 3), dtype=np.uint8)
for xtop, xright, xbottom, xleft in self.face_location_list:
person_frame: npt.NDArray[np.uint8] = \
self.return_concatenate_location_and_frame_resized_frame[xtop:xbottom, xleft:xright]
# person_frameをリサイズする
height: int = xbottom - xtop
width: int = xright - xleft
# 拡大・縮小率を算出
fy: float = finally_height_size / height
finally_width_size: int = int(width * fy)
resized_person_frame: cv2.Mat = \
cv2.resize(person_frame, dsize=(finally_width_size, finally_height_size))
person_frame_list.append(resized_person_frame) # type: ignore
"""DEBUG
cv2.imshow("DEBUG", person_frame)
cv2.waitKey(5000)
cv2.destroyAllWindows()
"""
# 拡大率に合わせて各座標を再計算する
# person_frame上の各座標
person_frame_xtop: int = 0
person_frame_xright: int = finally_width_size
person_frame_xbottom: int = finally_height_size
person_frame_xleft: int = 0
# 連結されたperson_frame上の各座標
concatenated_xtop: int = person_frame_xtop
concatenated_xright: int = person_frame_xright + \
(finally_width_size * detection_counter)
concatenated_xbottom: int = person_frame_xbottom
concatenated_xleft: int = person_frame_xleft + \
(finally_width_size * detection_counter)
concatenate_face_location_list.append(
(concatenated_xtop, concatenated_xright, concatenated_xbottom, concatenated_xleft)) # Dlib_api() order
detection_counter += 1
"""about coordinate order
dlib: (Left, Top, Right, Bottom,)
Dlib_api(): (top, right, bottom, left)
see bellow
https://github.com/davisking/dlib/blob/master/python_examples/faceapi.py
"""
concatenate_person_frame = np.hstack(person_frame_list)
"""DEBUG
cv2.imshow("face_encodings", concatenate_person_frame)
cv2.moveWindow("face_encodings", 800,600)
cv2.waitKey(500)
cv2.destroyAllWindows()
exit(0)
print("---------------------------------")
print(f'concatenate_face_location_list: {concatenate_face_location_list}')
print("---------------------------------")
"""
return concatenate_face_location_list, concatenate_person_frame
# フレーム前処理
# @profile()
[ドキュメント]
def frame_pre_processing(
self,
logger,
CONFIG: Dict,
resized_frame: npt.NDArray[np.uint8]
) -> List[Dict]:
"""Return `frame_datas_array`.
Args:
logger (_type_): logger
CONFIG (Dict): Dict of Initial settings
resized_frame (npt.NDArray[np.uint8]): Resized frame
Returns:
List[Dict]: `frame_datas_array`
Processing:
- If CONFIG["headless"] is False
- copy frame data for `overlay`
- composite `telop` and `logo`
- Compute face coordinates
- Make `frame_datas`
- `img`
- `face_location_list`
- `overlay`
- If `CONFIG["headless"] is True`, insert `dummy data`
- np.empty((2,2,3), dtype=np.uint8)
- `person_data_list`
- Make `frame_datas_array`
- frame_datas_array.append(frame_datas)
Data structure of `frame_datas_array`:
- `overlay` (npt.NDArray[np.uint8])
- `face_location_list` (List[Tuple[int,int,int,int]])
- `name` (str)
- `filename` (str)
- `percentage_and_symbol` (str)
- `person_data_list` (List)
- `frame_datas_array` (List[Dict])
- `resized_frame` (npt.NDArray[np.uint8])
See `Core.make_frame_datas_array()`
Example:
>>> exec_times = 2
# Initialize
CONFIG: Dict = Initialize('FACE-COORDINATE', 'info').initialize()
# Make generator
frame_generator_obj = VidCap().frame_generator(CONFIG)
# Make logger
import os.path
dir: str = os.path.dirname(__file__)
log = Logger().logger(__file__, dir)
# Make generator
core = Core()
# Repeat 'exec_times' times
for i in range(0, exec_times):
# Call __next__() from the generator object
resized_frame = frame_generator_obj.__next__()
frame_datas_array = core.frame_pre_processing(log, CONFIG,resized_frame)
"""
self.logger = logger
self.CONFIG: Dict = CONFIG
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
person_data_list: List[Dict] = []
name: str = 'Unknown'
filename: str = ''
frame_datas_array: List[Dict] = []
face_location_list: List[Tuple[int, int, int, int]] = []
percentage_and_symbol: str = ''
overlay: npt.NDArray[np.uint8] = np.empty(
(2, 2, 3), dtype=np.uint8) # Dummy data
# 描画系(bottom area, 半透明, telop, logo)
if self.CONFIG["headless"] is False:
# 半透明処理(前半)
if self.CONFIG["show_overlay"] is True:
overlay = self.resized_frame.copy()
"""DEBUG: Memory leak"""
# テロップとロゴマークの合成
if self.CONFIG["draw_telop_and_logo"] is True:
self.resized_frame = \
self._draw_telop(
self.logger,
self.CONFIG["cal_resized_telop_nums"],
self.resized_frame
)
self.resized_frame = \
self._draw_logo(
self.logger,
self.CONFIG["cal_resized_logo_nums"],
self.resized_frame
)
# 顔座標算出
if self.CONFIG["use_pipe"] is True:
face_location_list = \
self._return_face_location_list(
self.resized_frame,
self.CONFIG["set_width"],
self.CONFIG["set_height"],
self.CONFIG["model_selection"],
self.CONFIG["min_detection_confidence"],
self.CONFIG["same_time_recognize"]
)
else:
# date: str = datetime.now().strftime("%Y,%m,%d,%H,%M,%S,%f") # Not use
face_location_list: List[Tuple[int, int, int, int]] = \
Dlib_api_obj.face_locations(
# Dlib_api_obj.face_locations(
self.resized_frame,
self.CONFIG["upsampling"],
self.CONFIG["mode"]
)
# 顔がなかったら以降のエンコード処理を行わない
if len(face_location_list) == 0:
frame_datas_array: List[Dict] = \
self.make_frame_datas_array(
overlay,
face_location_list,
name,
filename,
percentage_and_symbol,
person_data_list,
frame_datas_array,
self.resized_frame
)
return frame_datas_array
# 顔が一定数以上なら以降の処理を行わない
if len(face_location_list) >= self.CONFIG["number_of_people"]:
self.logger.info(f'{self.CONFIG["number_of_people"]}人以上を検出しました')
frame_datas_array = \
self.make_frame_datas_array(
overlay,
face_location_list,
name,
filename,
percentage_and_symbol,
person_data_list,
frame_datas_array,
self.resized_frame
)
return frame_datas_array
frame_datas: Dict = {
'img': self.resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
# frame_datas_array.extend(frame_datas)
frame_datas_array.append(frame_datas)
return frame_datas_array
# 顔のエンコーディング
# @profile()
# @Cal_obj.Measure_func
[ドキュメント]
def face_encoding_process(
self,
logger,
CONFIG: Dict,
frame_datas_array: List[Dict]
) -> Tuple[List[npt.NDArray[np.float64]], List[Dict]]:
"""Encode face data and Return bellow.
- list of encoded data
- frame_datas_array
Args:
logger (_type_): logger
CONFIG (Dict): Dict including initial setting
frame_datas_array (List[Dict]): frame datas
Returns:
- list of encoded data
- Tuple[List[npt.NDArray[np.float64]]
- frame_datas_array
- List[Dict]]
Definition of person_data_list and frame_datas_array:
>>> person_data = {
'name': name,
'pict':filename,
'date':date,
'location':(top,right,bottom,left),
'percentage_and_symbol': percentage_and_symbol
}
>>> person_data_list.append(person_data)
>>> frame_datas = {
'img': resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
>>> frame_datas_array.append(frame_datas)
"""
self.logger = logger
self.CONFIG: Dict = CONFIG
self.frame_datas_array: List[Dict] = frame_datas_array
face_encodings: List[npt.NDArray[np.float64]] = []
# face_encodings_list = [] # Not used.
for frame_data in self.frame_datas_array:
resized_frame: npt.NDArray[np.uint8] = frame_data["img"]
# [(139, 190, 257, 72)]
face_location_list = frame_data["face_location_list"]
if len(face_location_list) == 0: # 顔がない場合
return face_encodings, self.frame_datas_array
elif len(face_location_list) > 0: # 顔がある場合
# 顔ロケーションからエンコーディングを求める
if self.CONFIG["use_pipe"] is True and self.CONFIG["person_frame_face_encoding"] is True:
"""FIX
人数分を繰り返し処理しているので時間がかかる。
dlibは一つの画像に複数の座標を与えて一度に処理をする。
なので各person_frameをくっつけて一つの画像にすれば処理時間は短くなる。
numpy.hstack(tup)[source]
Stack arrays in sequence horizontally (column wise).
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
"""
concatenate_face_location_list: List[Tuple[int, int, int, int]]
concatenate_person_frame: npt.NDArray[np.uint8]
concatenate_face_location_list, concatenate_person_frame = \
self.return_concatenate_location_and_frame(
resized_frame,
face_location_list
)
face_encodings = \
Dlib_api_obj.face_encodings(
self.CONFIG["deep_learning_model"],
concatenate_person_frame,
concatenate_face_location_list,
self.CONFIG["jitters"],
"small"
)
elif self.CONFIG["use_pipe"] is True and self.CONFIG["person_frame_face_encoding"] is False:
try:
face_encodings = \
Dlib_api_obj.face_encodings(
self.CONFIG["deep_learning_model"],
resized_frame,
face_location_list,
self.CONFIG["jitters"],
"small"
)
# TODO: #34 use_pipe = TrueとFalseによる'face_encodings'の処理速度の違いを究明する
# if face_encodings == []:
# return face_encodings, self.frame_datas_array
except Exception as e:
self.logger.warning(
f'resized_frame: {resized_frame}\nface_location_list: {face_location_list}')
self.logger.warning(f'ERROR: {e}')
self.logger.warning(format_exc())
exit(0)
elif self.CONFIG["use_pipe"] is False and self.CONFIG["person_frame_face_encoding"] is True:
self.logger.warning("config.ini:")
self.logger.warning(
"You cannot set person_frame_face_encoding = True if use_pipe = False")
self.logger.warning("Change the settings appropriately")
self.logger.warning("-" * 20)
self.logger.warning(format_exc(limit=None, chain=True))
self.logger.warning("-" * 20)
exit(0)
elif self.CONFIG["use_pipe"] is False and self.CONFIG["person_frame_face_encoding"] is False:
face_encodings = \
Dlib_api_obj.face_encodings(
self.CONFIG["deep_learning_model"],
resized_frame,
face_location_list,
self.CONFIG["jitters"],
"small"
)
# face_encodings_list = face_encodings_list.append(face_encodings)
# yield face_encodings, self.frame_datas_array
return face_encodings, self.frame_datas_array
# 顔の生データ(np.ndarray)を返す
"""How to slice
face_location order: top, right, bottom, left
how to slice: img[top:bottom, left:right]
"""
# def return_face_image(
# self,
# resized_frame,
# face_location
# ):
# self.resized_frame = resized_frame
# empty_ndarray = np.empty(shape=(0,0,0), dtype=np.uint8)
# if len(self.face_location) > 0:
# top = face_location[0]
# right = face_location[1]
# bottom = face_location[2]
# left = face_location[3]
# face_image = self.resized_frame[top:bottom, left:right]
# """DEBUG
# from .video_capture import VidCap
# VidCap().frame_imshow_for_debug(face_image)
# VidCap().frame_imshow_for_debug(self.resized_frame)
# """
# return face_image
# else:
# return empty_ndarray
# フレーム後処理
# @profile()
[ドキュメント]
def frame_post_processing(
self,
logger,
CONFIG: Dict,
face_encodings: List[npt.NDArray[np.float64]],
frame_datas_array: List[Dict]
) -> List[Dict]:
"""Modify each frame's datas.
Args:
logger (_type_): logger
CONFIG (Dict): Dict of initial settings
face_encodings (List[npt.NDArray[np.float64]]): List of encoded face datas
frame_datas_array (List[Dict]): List of datas
Returns:
List[Dict]: List of modified datas
Modify:
- Composite images
- Default face image
- Rectangle
- Percentage
- Name
- Percentage calculation
- Save cropped face images
- Make person_data_list
- Make frame_datas_list
"""
self.logger = logger
self.CONFIG: Dict = CONFIG
self.face_encodings: List[npt.NDArray[np.float64]] = face_encodings
self.frame_datas_array: List[Dict] = frame_datas_array
face_names: List[str] = []
face_location_list: List[Tuple[int, int, int, int]] = []
filename: str = ''
# debug_frame_turn_count = 0 # Not use
modified_frame_list = []
# frame_datas_arrayについて一度づつ回す
for frame_data in self.frame_datas_array:
# frame_dataにface_location_listがなければ処理をとばす
if "face_location_list" not in frame_data:
if self.CONFIG["headless"] is False:
# 半透明処理(後半)_1frameに対して1回
if self.CONFIG["show_overlay"] is True:
cv2.addWeighted(
frame_data["overlay"],
self.CONFIG["alpha"],
frame_data["img"],
1 - self.CONFIG["alpha"],
0,
frame_data["img"]
)
continue
resized_frame: npt.NDArray[np.uint8] = frame_data["img"]
face_location_list = frame_data["face_location_list"]
overlay: npt.NDArray[np.uint8] = frame_data["overlay"]
# person_data_listが変数に格納される
person_data_list = frame_data["person_data_list"]
date = datetime.now().strftime("%Y,%m,%d,%H,%M,%S,%f")
face_encoding: npt.NDArray[np.float64]
matches: npt.NDArray[np.bool8]
min_distance: float
# 名前リスト作成
for face_encoding in self.face_encodings:
# Initialize name, matches (Inner frame)
name: str = "Unknown"
matches, min_distance = \
self._check_compare_faces(
self.logger,
self.CONFIG["deep_learning_model"],
self.CONFIG["known_face_encodings"],
face_encoding,
self.CONFIG["tolerance"]
)
# if not np.any(matches is True): # If there is no such person
if not np.any(matches == 1): # If there is no such person
face_names.append(name) # Set "Unknown"
continue
else: # If there is an applicable person
face_name: str = self._return_face_name(
self.CONFIG,
matches,
min_distance
)
face_names.append(face_name) # set the person's name
if len(face_names) == 0:
continue
# face_location_listについて繰り返し処理 → **frame_datas_array**作成
# つまり人が写っているframeだけに対して以降の処理を行う、ということ。
number_of_people = 0 # 人数。計算上0人から始める。draw_default_face()で使用する
for (top, right, bottom, left), name in zip(face_location_list, face_names):
# person_data = defaultdict(int) # defaultdict(): k(eyの存在チェックが不要)[https://qiita.com/xza/items/72a1b07fcf64d1f4bdb7]
# person_data = {}
if name == 'Unknown':
percentage_and_symbol: str = ''
dis: str = ''
p: float = 1.0
# nameが誰かの名前の場合、以下の処理を行う。
else:
distance: str
name, distance = name.split(':')
# パーセンテージの算出
dis = str(round(float(distance), 2))
p = float(distance)
# return_percentage(p)
percentage = Cal_obj.return_percentage(
p, self.CONFIG["deep_learning_model"])
percentage = round(percentage, 1)
percentage_and_symbol = str(percentage) + '%'
# ファイル名を最初のアンダーバーで区切る(アンダーバーは複数なのでmaxsplit = 1)
try:
name, _ = name.split('_', maxsplit=1)
except:
self.logger.warning(
'ファイル名に異常が見つかりました', name, 'NAME_default.png あるいはNAME_001.png (001部分は001からはじまる連番)にしてください', 'noFaceフォルダに移動します')
move(name, './noFace/')
# return
continue
# nameがUnknownであってもなくても以降の処理を行う。
# クロップ画像保存
if self.CONFIG["crop_face_image"] is True:
if self.CONFIG["frequency_crop_image"] < self.CONFIG["number_of_crops"]:
pil_img_obj_rgb = self._pil_img_rgb_instance(
resized_frame)
if self.CONFIG["crop_with_multithreading"] is True:
# """1.3.08 multithreading 9.05s
with ThreadPoolExecutor() as executor:
future = executor.submit(self._make_crop_face_image,
CONFIG["anti_spoof"],
name,
dis,
pil_img_obj_rgb,
top,
left,
right,
bottom,
self.CONFIG["number_of_crops"],
self.CONFIG["frequency_crop_image"]
)
filename, number_of_crops, frequency_crop_image = future.result()
# """
else:
# """ORIGINAL: 1.3.08で変更 8.69s
filename, number_of_crops, frequency_crop_image = \
self._make_crop_face_image(
CONFIG["anti_spoof"],
name,
dis,
pil_img_obj_rgb,
top,
left,
right,
bottom,
self.CONFIG["number_of_crops"],
self.CONFIG["frequency_crop_image"]
)
# """
self.CONFIG["number_of_crops"] = 0
else:
self.CONFIG["number_of_crops"] += 1
# 描画系
if self.CONFIG["headless"] is False:
# デフォルト顔画像の描画
if self.deep_learning_model == 0:
if p <= self.CONFIG["tolerance"]: # ディスタンスpがtolerance以下の場合
if self.CONFIG["default_face_image_draw"] is True:
resized_frame: npt.NDArray[np.uint8] = \
self._draw_default_face(
self.logger,
self.CONFIG,
name,
resized_frame,
number_of_people
)
number_of_people += 1 # 何人目か
"""DEBUG"""
# frame_imshow_for_debug(resized_frame)
elif self.deep_learning_model == 1:
percentage = Cal_obj.to_percentage(
self.CONFIG["tolerance"], self.CONFIG["deep_learning_model"])
if p <= percentage: # ディスタンスpがtolerance以下の場合
if self.CONFIG["default_face_image_draw"] is True:
resized_frame: npt.NDArray[np.uint8] = \
self._draw_default_face(
self.logger,
self.CONFIG,
name,
resized_frame,
number_of_people
)
number_of_people += 1
# ピンクまたは白の四角形描画
if self.CONFIG["rectangle"] is True:
if name == 'Unknown': # プリセット顔画像に対応する顔画像がなかった場合
resized_frame: npt.NDArray[np.uint8] = self._draw_pink_rectangle(
resized_frame, top, bottom, left, right)
else: # プリセット顔画像に対応する顔画像があった場合
resized_frame: npt.NDArray[np.uint8] = \
self._draw_white_rectangle(
self.CONFIG["rectangle"],
resized_frame,
top,
left,
right,
bottom
)
# パーセンテージ描画
if self.CONFIG["show_percentage"] is True:
resized_frame: npt.NDArray[np.uint8] = \
self._display_percentage(
self.CONFIG["deep_learning_model"],
percentage_and_symbol,
resized_frame,
p,
left,
right,
bottom,
self.CONFIG["tolerance"]
)
"""DEBUG"""
# frame_imshow_for_debug(resized_frame)
# 名前表示と名前用四角形の描画
if self.CONFIG["show_name"] is True:
resized_frame: npt.NDArray[np.uint8] = \
self._draw_rectangle_for_name(
name,
resized_frame,
left,
right, bottom
)
pil_img_obj = Image.fromarray(resized_frame)
resized_frame: npt.NDArray[np.uint8] = \
self._draw_text_for_name(
self.CONFIG["deep_learning_model"],
self.logger,
left,
right,
bottom,
name,
p,
self.CONFIG["tolerance"],
pil_img_obj
)
"""DEBUG"""
# frame_imshow_for_debug(resized_frame)
# target_rectangleの描画
if self.CONFIG["target_rectangle"] is True:
resized_frame: npt.NDArray[np.uint8] = \
self._draw_target_rectangle(
person_data_list,
self.CONFIG,
resized_frame,
top,
bottom,
left,
right,
name
)
"""DEBUG
frame_imshow_for_debug(resized_frame)
"""
person_data = {
'name': name,
'pict': filename,
'date': date,
'location': (top, right, bottom, left),
'percentage_and_symbol': percentage_and_symbol
}
person_data_list.append(person_data)
# self.frame_datas_array = \
# self.make_frame_datas_array(
# overlay,
# face_location_list,
# name,
# filename,
# percentage_and_symbol,
# person_data_list,
# frame_datas_array,
# resized_frame
# )
# End for (top, right, bottom, left), name in zip(face_location_list, face_names)
# _1frameに対して1回 <- ?
# 人が写っているframeをforで回している途中です。
if self.CONFIG["headless"] is False:
frame_datas = {
'img': resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
"""DEBUG
frame_imshow_for_debug(resized_frame)
self.frame_datas_array.append(frame_datas)
"""
modified_frame_list.append(frame_datas)
elif self.CONFIG["headless"] is True:
frame_datas = {
'img': resized_frame,
'face_location_list': face_location_list,
'overlay': overlay,
'person_data_list': person_data_list
}
# self.frame_datas_array.append(frame_datas)
modified_frame_list.append(frame_datas)
# else: # この処理はどうして書いたのか?不明。
# frame_datas = {'img':resized_frame, 'face_location_list':face_location_list, 'overlay': overlay, 'person_data_list': 'no-data_person_data_list'}
# # self.frame_datas_array.append(frame_datas)
# modified_frame_list.append(frame_datas)
if self.CONFIG["headless"] is False:
# 半透明処理(後半)_1frameに対して1回
if self.CONFIG["show_overlay"] is True:
# cv2.addWeighted(overlay, self.CONFIG["alpha"], resized_frame, 1-self.CONFIG["alpha"], 0, resized_frame)
for modified_frame in modified_frame_list:
cv2.addWeighted(
modified_frame["overlay"], self.CONFIG["alpha"], modified_frame["img"], 1 -
self.CONFIG["alpha"], 0, modified_frame["img"]
)
# """DEBUG"""
# frame_imshow_for_debug(resized_frame)
# return frame_datas
"""DEBUG
print(f"modified_frame_list.__sizeof__(): {modified_frame_list.__sizeof__()}MB")
"""
return modified_frame_list
# @profile()
[ドキュメント]
def r_face_image(
self,
frame: npt.NDArray[np.uint8],
face_location: Tuple[int, int, int, int]
) -> npt.NDArray[np.uint8]:
"""Return face image which expressed for ndarray.
Args:
frame (npt.NDArray[np.uint8]): Frame image
face_location (Tuple[int,int,int,int]): Face location (coordinate)
Returns:
npt.NDArray[np.uint8]: Face image which expressed for ndarray
"""
self.frame: npt.NDArray[np.uint8] = frame
self.face_location: Tuple[int, int, int, int] = face_location
face_image: npt.NDArray[np.uint8] = \
Return_face_image_obj.return_face_image(
self.frame, self.face_location)
return face_image
# @profile()
[ドキュメント]
def return_anti_spoof(
self,
frame: npt.NDArray[np.uint8],
face_location: Tuple[int, int, int, int]
) -> Tuple[str, float, bool]:
"""Return result of anti spoof.
Note:
This function is EXPERIMENTAL!
It might occur side effects.
Args:
frame (npt.NDArray[np.uint8]): Each of frame
face_location (Tuple[int,int,int,int]): Face location
Returns:
Tuple[str, float, bool]:
- spoof_or_real
- score
- ELE
- Equally Likely Events
"""
self.frame: npt.NDArray[np.uint8] = frame
self.face_location: Tuple[int, int, int, int] = face_location
face_image: npt.NDArray[np.uint8] = self.r_face_image(
self.frame, self.face_location)
# face_image = Return_face_image_obj.return_face_image(self.frame, self.face_location)
# face_image = self.return_face_image(self.frame, self.face_location)
# VidCap_obj.frame_imshow_for_debug(face_image) # DEBUG
""" DEBUG: face_image確認 -> 正方形であることを確認した
print(self.face_location)
cv2.imshow('Core: DEBUG', face_image)
cv2.waitKey(3000)
cv2.destroyAllWindows()
"""
# 定形処理:リサイズ, 標準化, 成形, float32キャスト, 推論, 後処理
input_image: cv2.Mat = \
cv2.resize(face_image, dsize=(128, 128))
"""DEBUG"""
# VidCap_obj.frame_imshow_for_debug(input_image)
input_image = input_image.transpose(2, 0, 1).astype('float32')
input_image = input_image.reshape(-1, 3, 128, 128)
# 推論
input_name: str = onnx_session.get_inputs()[0].name
result: List[npt.NDArray[np.float32]] = \
onnx_session.run(None, {input_name: input_image}) # type: ignore
# 後処理
result_ndarray: npt.NDArray[np.float32] = np.array(result)
result_squeeze: npt.NDArray[np.float32] = np.squeeze(result_ndarray)
as_index: np.int64 = np.argmax(result_squeeze)
score: float = 0.0
if result_squeeze[0] > result_squeeze[1]:
score = result_squeeze[0] - result_squeeze[1]
else:
score = result_squeeze[1] - result_squeeze[0]
score = round(score, 2)
ELE: bool = False
if score < 0.4:
ELE = True
spoof_or_real: str = ''
if as_index == 0 and score >= 0.8: # (255, 0, 0)
# spoof_or_real = 'real'
spoof_or_real = 'spoof'
return spoof_or_real, score, ELE
if as_index == 1 and score >= 0.8:
# else:
# spoof_or_real = 'spoof'
spoof_or_real = 'real'
return spoof_or_real, score, ELE
else:
spoof_or_real = 'cannot_distinction'
return spoof_or_real, score, ELE
# 以下、元libdraw.LibDraw
# @profile()
def _draw_pink_rectangle(
self,
resized_frame: npt.NDArray[np.uint8],
top,
bottom,
left,
right
) -> np.ndarray:
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.top = top
self.bottom = bottom
self.left = left
self.right = right
cv2.rectangle(
self.resized_frame,
(self.left, self.top),
(self.right, self.bottom),
(255, 87, 243),
2
) # pink
return self.resized_frame
# @profile()
def _draw_white_rectangle(
self,
rectangle,
resized_frame: npt.NDArray[np.uint8],
top,
left,
right,
bottom
) -> np.ndarray:
self.rectangle = rectangle
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.top = top
self.left = left
self.right = right
self.bottom = bottom
cv2.rectangle(self.resized_frame, (self.left-18, self.top-18),
(self.right+18, self.bottom+18), (175, 175, 175), 2) # 灰色内枠
cv2.rectangle(self.resized_frame, (self.left-20, self.top-20),
(self.right+20, self.bottom+20), (255, 255, 255), 2) # 白色外枠
return self.resized_frame
# パーセンテージ表示
# @profile()
def _display_percentage(
self,
deep_learning_model,
percentage_and_symbol, resized_frame: npt.NDArray[np.uint8],
p,
left,
right,
bottom,
tolerance
) -> np.ndarray:
self.deep_learning_model = deep_learning_model
self.percentage_and_symbol = percentage_and_symbol
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.p = p
self.left = left
self.right = right
self.bottom = bottom
self.tolerance = tolerance
font = cv2.FONT_HERSHEY_COMPLEX_SMALL
# パーセンテージ表示用の灰色に塗りつぶされた四角形の描画
cv2.rectangle(self.resized_frame, (self.left-25, self.bottom + 75),
(self.right+25, self.bottom+50), (30, 30, 30), cv2.FILLED) # 灰色
# テキスト表示位置
fontsize = 14
putText_center = int((self.left-25 + self.right+25)/2)
putText_chaCenter = int(5/2)
putText_pos = putText_center - \
(putText_chaCenter*fontsize) - int(fontsize/2)
putText_position = (putText_pos, self.bottom + 75 - int(fontsize / 2))
# toleranceの値によってフォント色を変える
if deep_learning_model == 0:
if self.p < self.tolerance:
# パーセンテージを白文字表示
self.resized_frame: npt.NDArray[np.uint8] = cv2.putText(
self.resized_frame, self.percentage_and_symbol, putText_position, font, 1, (255, 255, 255), 1, cv2.LINE_AA)
else:
# パーセンテージをピンク表示
self.resized_frame: npt.NDArray[np.uint8] = cv2.putText(
self.resized_frame, self.percentage_and_symbol, putText_position, font, 1, (255, 87, 243), 1, cv2.LINE_AA)
elif deep_learning_model == 1:
percentage = Cal_obj.to_percentage(
self.tolerance, deep_learning_model)
if self.p < percentage:
# パーセンテージを白文字表示
self.resized_frame: npt.NDArray[np.uint8] = cv2.putText(
self.resized_frame, self.percentage_and_symbol, putText_position, font, 1, (255, 255, 255), 1, cv2.LINE_AA)
else:
# パーセンテージをピンク表示
self.resized_frame: npt.NDArray[np.uint8] = cv2.putText(
self.resized_frame, self.percentage_and_symbol, putText_position, font, 1, (255, 87, 243), 1, cv2.LINE_AA)
return self.resized_frame
# デフォルト顔画像の描画処理
# @profile()
def _draw_default_face_image(
self,
logger,
resized_frame: npt.NDArray[np.uint8],
default_face_small_image,
x1,
y1,
x2,
y2,
number_of_people,
face_image_width
):
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.default_face_small_image = default_face_small_image
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.number_of_people = number_of_people
self.face_image_width = face_image_width
try:
self.x1 = self.x1 + (self.number_of_people * self.face_image_width)
self.x2 = self.x2 + (self.number_of_people * self.face_image_width)
self.resized_frame[self.y1:self.y2, self.x1:self.x2] = self.resized_frame[self.y1:self.y2, self.x1:self.x2] * (
1 - self.default_face_small_image[:, :, 3:] / 255) + self.default_face_small_image[:, :, :3] * (default_face_small_image[:, :, 3:] / 255)
# resized_frame[y1:y2, x1:x2] = resized_frame[y1:y2, x1:x2] * a + b # ValueError: assignment destination is read-only
"""DEBUG"""
# frame_imshow_for_debug(resized_frame)
except:
logger.info('デフォルト顔画像の描画が出来ません')
logger.info('描画面積が足りないか他に問題があります')
return self.resized_frame
# デフォルト顔画像の表示面積調整
# @profile()
def _adjust_display_area(
self,
CONFIG,
default_face_image
) -> tuple:
self.CONFIG = CONFIG
self.default_face_image = default_face_image
"""TODO: 繰り返し計算させないようリファクタリング"""
face_image_width = int(self.CONFIG["set_width"] / 15)
default_face_small_image = cv2.resize(self.default_face_image, dsize=(
face_image_width, face_image_width)) # 幅・高さともに同じとする
# 高さ = face_image_width
x1, y1, x2, y2 = 0, self.CONFIG["set_height"] - face_image_width - \
10, face_image_width, self.CONFIG["set_height"] - 10
return x1, y1, x2, y2, default_face_small_image, face_image_width
# @profile()
def _draw_default_face(
self,
logger,
CONFIG,
name,
resized_frame: npt.NDArray[np.uint8],
number_of_people
):
self.logger = logger
self.CONFIG = CONFIG
self.name = name
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.number_of_people = number_of_people
default_face_image_dict = self.CONFIG["default_face_image_dict"]
default_name_png = self.name + '_default.png'
default_face_image_name_png = './preset_face_images/' + default_name_png
if not self.name in default_face_image_dict: # default_face_image_dictにnameが存在しなかった場合
# 各人物のデフォルト顔画像ファイルの読み込み
if exists(default_face_image_name_png):
# WINDOWSのopencv-python4.2.0.32ではcv2.imread()でpng画像を読み込めないバグが
# 存在する可能性があると思う。そこでPNG画像の読み込みにはpillowを用いることにする
default_face_image = np.array(
Image.open(default_face_image_name_png))
"""DEBUG
frame_imshow_for_debug(default_face_image)
"""
# BGAをRGBへ変換
default_face_image = cv2.cvtColor(
default_face_image, cv2.COLOR_BGR2RGBA)
"""DEBUG
frame_imshow_for_debug(default_face_image)
"""
# if default_face_image.ndim == 3: # RGBならアルファチャンネル追加 resized_frameがアルファチャンネルを持っているから。
# default_face_imageをメモリに保持
# キーnameと値default_face_imageの組み合わせを挿入する
default_face_image_dict[self.name] = default_face_image
else:
if self.name != 'Unknown':
self.logger.info(
f'{self.name}さんのデフォルト顔画像ファイルがpreset_face_imagesフォルダに存在しません')
self.logger.info(
f'{self.name}さんのデフォルト顔画像ファイルをpreset_face_imagesフォルダに用意してください')
else: # default_face_image_dictにnameが存在した場合
# キーnameに対応する値をdefault_face_imageへ格納する
default_face_image = default_face_image_dict[self.name]
"""DEBUG
frame_imshow_for_debug(default_face_image) # OK
"""
x1, y1, x2, y2, default_face_small_image, face_image_width = self._adjust_display_area(
CONFIG, default_face_image)
resized_frame: npt.NDArray[np.uint8] = self._draw_default_face_image(
logger, resized_frame, default_face_small_image, x1, y1, x2, y2, number_of_people, face_image_width)
return resized_frame
# @profile()
def _draw_rectangle_for_name(
self,
name,
resized_frame: npt.NDArray[np.uint8],
left,
right, bottom
):
self.name = name
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.left = left
self.right = right
self.bottom = bottom
if self.name == 'Unknown': # nameがUnknownだった場合
self.resized_frame = cv2.rectangle(self.resized_frame, (
self.left-25, self.bottom + 25), (self.right+25, self.bottom+50), (255, 87, 243), cv2.FILLED) # pink
else: # nameが既知だった場合
# cv2.rectangle(resized_frame, (left-25, bottom + 25), (right+25, bottom+50), (211, 173, 54), thickness = 1) # 濃い水色の線
self.resized_frame = cv2.rectangle(self.resized_frame, (
self.left-25, self.bottom + 25), (self.right+25, self.bottom+50), (211, 173, 54), cv2.FILLED) # 濃い水色
return self.resized_frame
# 帯状四角形(ピンク)の描画
# @profile()
def _draw_error_messg_rectangle(
self,
resized_frame: npt.NDArray[np.uint8],
set_height,
set_width
):
"""Deprecated."""
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.set_height = set_height
self.set_width = set_width
error_messg_rectangle_top: int = int((self.set_height + 20) / 2)
error_messg_rectangle_bottom: int = int((self.set_height + 120) / 2)
error_messg_rectangle_left: int = 0
error_messg_rectangle_right: int = self.set_width
cv2.rectangle(self.resized_frame, (error_messg_rectangle_left, error_messg_rectangle_top), (
error_messg_rectangle_right, error_messg_rectangle_bottom), (255, 87, 243), cv2.FILLED) # pink
return error_messg_rectangle_left, error_messg_rectangle_right, error_messg_rectangle_bottom
# drawオブジェクトを生成
# @profile()
def _make_draw_object(self, frame):
self.frame = frame
draw = ImageDraw.Draw(Image.fromarray(self.frame))
return draw
# @profile()
def _draw_error_messg_rectangle_messg(
self,
draw,
error_messg_rectangle_position,
error_messg_rectangle_messg,
error_messg_rectangle_font
):
"""Deprecated."""
self.draw = draw
self.error_messg_rectangle_position = error_messg_rectangle_position
self.error_messg_rectangle_messg = error_messg_rectangle_messg
self.error_messg_rectangle_font = error_messg_rectangle_font
draw.text(self.error_messg_rectangle_position, self.error_messg_rectangle_messg, fill=(
255, 255, 255, 255), font=self.error_messg_rectangle_font)
# @profile()
def _return_fontpath(self, logger):
# フォントの設定(フォントファイルのパスと文字の大きさ)
operating_system: str = system()
fontpath: str = ''
if (operating_system == 'Linux'):
# fontpath = "/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc"
fontpath = "/usr/share/fonts/truetype/mplus/mplus-1mn-bold.ttf"
elif (operating_system == 'Windows'):
# fontpath = "C:/WINDOWS/FONTS/BIZ-UDGOTHICR.TTC"
fontpath = "C:/WINDOWS/FONTS/BIZ-UDGOTHICB.TTC" # bold体
else:
logger.info('オペレーティングシステムの確認が出来ません。システム管理者にご連絡ください')
return fontpath
# @profile()
def _calculate_text_position(
self,
left,
right,
name,
fontsize,
bottom
):
# TODO: #17 英数字のみの場合の位置決定バグ
self.left = left
self.right = right
self.name = name
self.fontsize = fontsize
self.bottom = bottom
center = int((self.left + self.right)/2)
chaCenter = int(len(self.name)/2)
pos = center - (chaCenter * self.fontsize) - int(self.fontsize/2)
position = (pos, self.bottom + (self.fontsize * 2))
Unknown_position = (pos + self.fontsize,
self.bottom + (self.fontsize * 2))
return position, Unknown_position
# @profile()
def _draw_name(
self,
deep_learning_model,
name,
pil_img_obj,
Unknown_position,
font,
p,
tolerance,
position
):
self.deep_learning_model = deep_learning_model
self.name = name
self.pil_img_obj = pil_img_obj
self.Unknown_position = Unknown_position
self.font = font
self.p = p
self.tolerance = tolerance
self.position = position
local_draw_obj = ImageDraw.Draw(self.pil_img_obj)
if self.name == 'Unknown': # nameがUnknownだった場合
# draw.text(Unknown_position, '照合不一致', fill=(255, 255, 255, 255), font = font)
# unregistered = mojimoji.han_to_zen('UNREGISTERED')
# local_draw_obj.text(self.Unknown_position, unregistered, fill=(255, 255, 255, 255), font = self.font)
local_draw_obj.text(self.Unknown_position, 'UNREGISTERED', fill=(
255, 255, 255, 255), font=self.font)
# local_draw_obj.text(self.Unknown_position, ' 未登録', fill=(255, 255, 255, 255), font = self.font)
else: # nameが既知の場合
if deep_learning_model == 0:
# if percentage > 99.0:
if self.p < self.tolerance:
# nameの描画
local_draw_obj.text(self.position, self.name, fill=(
255, 255, 255, 255), font=self.font)
else:
local_draw_obj.text(self.position, self.name, fill=(
255, 87, 243, 255), font=self.font)
elif deep_learning_model == 1:
percentage = Cal_obj.to_percentage(
self.tolerance, deep_learning_model)
if self.p < percentage:
# nameの描画
local_draw_obj.text(self.position, self.name, fill=(
255, 255, 255, 255), font=self.font)
else:
local_draw_obj.text(self.position, self.name, fill=(
255, 87, 243, 255), font=self.font)
return self.pil_img_obj
# pil_img_objをnumpy配列に変換
# @profile()
def _convert_pil_img_to_ndarray(
self,
pil_img_obj
):
self.pil_img_obj = pil_img_obj
frame = np.array(self.pil_img_obj)
"""DEBUG: Memory leak
del pil_img_obj
gc.collect()
"""
return frame
# @profile()
def _draw_text_for_name(
self,
deep_learning_model,
logger,
left,
right,
bottom,
name,
p,
tolerance,
pil_img_obj
):
self.deep_learning_model = deep_learning_model
self.logger = logger
self.left = left
self.right = right
self.bottom = bottom
self.name = name
self.p = p
self.tolerance = tolerance
self.pil_img_obj = pil_img_obj
# すべての文字を全角変換する
self.name = mojimoji.han_to_zen(
self.name, ascii=True, kana=True, digit=True)
fontpath = self._return_fontpath(logger)
"""TODO #16 FONTSIZEハードコーティング訂正"""
fontsize = 14
font = ImageFont.truetype(fontpath, fontsize, encoding='utf-8')
# テキスト表示位置決定
position, Unknown_position = \
self._calculate_text_position(
self.left,
self.right,
self.name,
fontsize,
self.bottom
)
# nameの描画
self.pil_img_obj = \
self._draw_name(
self.deep_learning_model,
self.name,
self.pil_img_obj,
Unknown_position,
font,
self.p,
self.tolerance,
position
)
# pil_img_objをnumpy配列に変換
resized_frame: npt.NDArray[np.uint8] = self._convert_pil_img_to_ndarray(
self.pil_img_obj)
# del self.pil_img_obj
return resized_frame
# target_rectangleの描画
# @profile()
def _draw_target_rectangle(
self,
person_data_list,
CONFIG,
resized_frame: npt.NDArray[np.uint8],
top,
bottom,
left,
right,
name
):
self.person_data_list = person_data_list,
self.anti_spoof = CONFIG["anti_spoof"],
self.rect01_png = CONFIG["rect01_png"]
self.rect01_NG_png = CONFIG["rect01_NG_png"]
self.rect01_REAL_png = CONFIG["rect01_REAL_png"]
self.rect01_SPOOF_png = CONFIG["rect01_SPOOF_png"]
self.rect01_CANNOT_DISTINCTION_png = CONFIG["rect01_CANNOT_DISTINCTION_png"]
self.resized_frame: npt.NDArray[np.uint8] = resized_frame
self.top = top
self.bottom = bottom
self.left = left
self.right = right
self.name = name
face_location = (self.top, self.right, self.bottom, self.left)
width_ratio: float
height_ratio: float
face_width: int
face_height: int
result = None
spoof_or_real = None
score = 0.0
ELE = True
if self.anti_spoof[0] is True:
# Fix: TODO: この箇所でreturn_anti_spoof()を呼び出すのは重複になる
# for person_data in self.person_data_list:
# for person_data_element in person_data:
# if person_data_element == {}:
# continue
# spoof_or_real = person_data_element["spoof_dict"]["spoof_or_real"]
# score = person_data_element["spoof_dict"]["score"]
# ELE = person_data_element["spoof_dict"]["ELE"]
# ELE: Equally Likely Events
spoof_or_real, score, ELE = self.return_anti_spoof(
self.resized_frame, face_location)
if spoof_or_real == 'spoof' and ELE is False:
face_width: int = self.right - self.left
face_height: int = self.bottom - self.top
orgHeight, orgWidth = self.rect01_SPOOF_png.shape[:2]
width_ratio = 1.0 * (face_width / orgWidth)
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_SPOOF_png = cv2.resize(
self.rect01_SPOOF_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_SPOOF_png.shape[1], self.top + \
self.rect01_SPOOF_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_SPOOF_png[:, :, 3:] / 255) + \
self.rect01_SPOOF_png[:, :, :3] * \
(self.rect01_SPOOF_png[:, :, 3:] / 255)
except:
# TODO: np.clip
pass
elif spoof_or_real == 'cannot_distinction' and ELE is False:
face_width: int = self.right - self.left
face_height: int = self.bottom - self.top
orgHeight, orgWidth = self.rect01_CANNOT_DISTINCTION_png.shape[:2]
width_ratio = 1.0 * (face_width / orgWidth)
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_CANNOT_DISTINCTION_png = cv2.resize(
self.rect01_CANNOT_DISTINCTION_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_CANNOT_DISTINCTION_png.shape[1], self.top + \
self.rect01_CANNOT_DISTINCTION_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_CANNOT_DISTINCTION_png[:, :, 3:] / 255) + \
self.rect01_CANNOT_DISTINCTION_png[:, :, :3] * (
self.rect01_CANNOT_DISTINCTION_png[:, :, 3:] / 255)
except:
# TODO: np.clip
pass
elif self.name != 'Unknown' and spoof_or_real == 'real' and ELE is False: # self.nameが既知の場合
face_width: int = self.right - self.left
face_height: int = self.bottom - self.top
orgHeight, orgWidth = self.rect01_REAL_png.shape[:2]
width_ratio = 1.0 * (face_width / orgWidth)
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_REAL_png = cv2.resize(
self.rect01_REAL_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_REAL_png.shape[1], self.top + \
self.rect01_REAL_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_REAL_png[:, :, 3:] / 255) + \
self.rect01_REAL_png[:, :, :3] * \
(self.rect01_REAL_png[:, :, 3:] / 255)
except:
# TODO: np.clip
pass
elif self.name == 'Unknown' and spoof_or_real == 'real' and ELE is False: # self.nameがUnknownだった場合
fx: float = 0.0
face_width = self.right - self.left
face_height = self.bottom - self.top
# rect01_NG_png←ピンクのtarget_rectangle
# rect01_NG_png: cv2.Mat = cv2.imread("images/rect01_NG.png", cv2.IMREAD_UNCHANGED)
orgHeight, orgWidth = self.rect01_NG_png.shape[:2]
width_ratio = float(1.0 * (face_width / orgWidth))
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_NG_png = cv2.resize(
self.rect01_NG_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_NG_png.shape[1], self.top + \
self.rect01_NG_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_NG_png[:, :, 3:] / 255) + \
self.rect01_NG_png[:, :, :3] * \
(self.rect01_NG_png[:, :, 3:] / int(255))
except:
# TODO: np.clip
pass
elif self.anti_spoof[0] is False:
# BUG FIX: v1.4.04
ELE = False
if self.name != 'Unknown': # self.nameが既知の場合
face_width: int = self.right - self.left
face_height: int = self.bottom - self.top
orgHeight, orgWidth = self.rect01_png.shape[:2]
width_ratio = 1.0 * (face_width / orgWidth)
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_png = cv2.resize(
self.rect01_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_png.shape[1], self.top + \
self.rect01_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_png[:, :, 3:] / 255) + \
self.rect01_png[:, :, :3] * \
(self.rect01_png[:, :, 3:] / 255)
except:
# TODO: np.clip
pass
elif self.name == 'Unknown': # self.nameがUnknownだった場合
fx: float = 0.0
face_width = self.right - self.left
face_height = self.bottom - self.top
# rect01_NG_png←ピンクのtarget_rectangle
# rect01_NG_png: cv2.Mat = cv2.imread("images/rect01_NG.png", cv2.IMREAD_UNCHANGED)
orgHeight, orgWidth = self.rect01_NG_png.shape[:2]
width_ratio = float(1.0 * (face_width / orgWidth))
height_ratio = 1.0 * (face_height / orgHeight)
self.rect01_NG_png = cv2.resize(
self.rect01_NG_png, None, fx=width_ratio, fy=height_ratio)
x1, y1, x2, y2 = self.left, self.top, self.left + \
self.rect01_NG_png.shape[1], self.top + \
self.rect01_NG_png.shape[0]
try:
self.resized_frame[y1:y2, x1:x2] = self.resized_frame[y1:y2, x1:x2] * (1 - self.rect01_NG_png[:, :, 3:] / 255) + \
self.rect01_NG_png[:, :, :3] * \
(self.rect01_NG_png[:, :, 3:] / int(255))
except:
# TODO: np.clip
pass
return self.resized_frame
[ドキュメント]
def common_process(
self,
CONFIG: Dict
) -> Generator:
"""Generator of frame_datas_array.
common_process function consists 3 part of Core() methods.
1. Core().frame_pre_processing
2. Core().face_encoding_process
3. Core().frame_post_processing
Yields:
Generator: frame_datas_array
- frame_datas_array: List[Dict]
Example:
Make generator object
>>> obj = Core().common_process(CONFIG)
Call '__next__()' method
>>> while True:
frame_datas_array = obj.__next__()
"""
self.CONFIG: Dict = CONFIG
frame_generator_obj = VidCap_obj.frame_generator(self.CONFIG)
while True:
try:
frame_datas_array: List[Dict] = \
self.frame_pre_processing(
self.logger,
CONFIG,
frame_generator_obj.__next__()
)
"""DEBUG
self.logger.debug(inspect.currentframe().f_back.f_code.co_filename)
self.logger.debug(inspect.currentframe().f_back.f_lineno)
self.logger.debug(f'frame_datas_array size: {len(frame_datas_array), getsizeof(frame_datas_array)}')
self.logger.debug(inspect.currentframe().f_back.f_code.co_filename)
self.logger.debug(inspect.currentframe().f_back.f_lineno)
self.logger.debug(f'CONFIG size: {len(CONFIG), getsizeof(CONFIG)}')
"""
face_encodings, frame_datas_array = \
self.face_encoding_process(
self.logger,
CONFIG,
frame_datas_array
)
# FIXED: ISSUE: #1 Awai_diff
if len(face_encodings) == 0:
# DEBUG:
# VidCap_obj.frame_imshow_for_debug(frame_datas_array[0]['img'])
yield frame_datas_array
continue
frame_datas_array = \
self.frame_post_processing(
self.logger,
CONFIG,
face_encodings,
frame_datas_array
)
yield frame_datas_array
except StopIteration:
self.logger.warning("DATA RECEPTION HAS ENDED")
exit(0)
except Exception as e:
self.logger.warning("ERROR OCURRED")
self.logger.warning("-" * 20)
self.logger.warning(f"ERROR TYPE: {e}")
self.logger.warning(format_exc(limit=None, chain=True))
self.logger.warning("-" * 20)
exit(0)
[ドキュメント]
def override_args_dict(
self,
CONFIG: Dict,
override_list: List[Tuple]
) -> Dict:
"""Override CONFIG for example.
Args:
Dict: CONFIG
List[Tuple]: override_list
Returns:
Dict: CONFIG
Example:
>>> CONFIG = Core.override_args_dict(
CONFIG,
[
('crop_face_image', False),
('output_debug_log', True)
]
)
Note:
- *THIS METHOD IS EXPERIMENTAL*
- Unexpected side effects may occur.
- If you specified key is not exist, application will fail down
with print out log 'warning'.
- You cannot change key 'headless'. If override it, application will fall down.
"""
self.logger.warning("'override' method is EXPERIMENTAL")
self.logger.warning("Unexpected side effects may occur")
element: Tuple
for element in override_list:
key, value = element
if not key in CONFIG:
self.logger.error(f"{key} dose not exist")
exit()
if key == 'headless':
self.logger.warning(
"You cannot change key 'headless' from True to False.")
self.logger.warning("exit")
exit()
CONFIG[key] = value
return CONFIG